|
@ -13,6 +13,7 @@ |
|
|
|
|
|
|
|
|
#define ALIGN16 __attribute__((aligned(16))) |
|
|
#define ALIGN16 __attribute__((aligned(16))) |
|
|
#define KERNEL_SIZE 7 |
|
|
#define KERNEL_SIZE 7 |
|
|
|
|
|
#define SIGMA_AV 2 |
|
|
#define HALF_KERNEL KERNEL_SIZE / 2 |
|
|
#define HALF_KERNEL KERNEL_SIZE / 2 |
|
|
|
|
|
|
|
|
// number of xmm registers needed to store
|
|
|
// number of xmm registers needed to store
|
|
@ -20,29 +21,31 @@ |
|
|
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 |
|
|
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 |
|
|
|
|
|
|
|
|
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
// prepare kernel
|
|
|
// according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma:
|
|
|
float kernel[KERNEL_SIZE]; |
|
|
// σ_av = sqrt((w*w-1)/12)
|
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; |
|
|
// for our 7x7 filter we have σ_av = 2.0.
|
|
|
|
|
|
// applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2]
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) { |
|
|
// after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2
|
|
|
float x = HALF_KERNEL - i; |
|
|
// since it's a box blur filter, n >= 3
|
|
|
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); |
|
|
//
|
|
|
sum += kernel[i]; |
|
|
// [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf
|
|
|
|
|
|
// [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics
|
|
|
|
|
|
|
|
|
|
|
|
int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV)); |
|
|
|
|
|
if (n < 3) n = 3; |
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) |
|
|
|
|
|
{ |
|
|
|
|
|
// horizontal pass includes image transposition:
|
|
|
|
|
|
// instead of writing pixel src[x] to dst[x],
|
|
|
|
|
|
// we write it to transposed location.
|
|
|
|
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
|
|
|
|
blur_impl_horizontal_pass_sse2(src, dst, width, height); |
|
|
|
|
|
blur_impl_horizontal_pass_sse2(dst, src, height, width); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// normalize kernel
|
|
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) |
|
|
|
|
|
kernel[i] /= sum; |
|
|
|
|
|
|
|
|
|
|
|
// horizontal pass includes image transposition:
|
|
|
|
|
|
// instead of writing pixel src[x] to dst[x],
|
|
|
|
|
|
// we write it to transposed location.
|
|
|
|
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
|
|
|
|
blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height); |
|
|
|
|
|
blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width); |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) { |
|
|
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) { |
|
|
for (int row = 0; row < height; row++) { |
|
|
for (int row = 0; row < height; row++) { |
|
|
for (int column = 0; column < width; column++, src++) { |
|
|
for (int column = 0; column < width; column++, src++) { |
|
|
__m128i rgbaIn[REGISTERS_CNT]; |
|
|
__m128i rgbaIn[REGISTERS_CNT]; |
|
@ -91,6 +94,7 @@ void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, |
|
|
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero), |
|
|
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero), |
|
|
_mm_unpackhi_epi16(acc, zero)); |
|
|
_mm_unpackhi_epi16(acc, zero)); |
|
|
|
|
|
|
|
|
|
|
|
// multiplication is significantly faster than division
|
|
|
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc), |
|
|
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc), |
|
|
_mm_set1_ps(1/((float)KERNEL_SIZE)))); |
|
|
_mm_set1_ps(1/((float)KERNEL_SIZE)))); |
|
|
|
|
|
|
|
|