diff --git a/blur.h b/blur.h index 83e1b9b..5e959a9 100644 --- a/blur.h +++ b/blur.h @@ -8,7 +8,7 @@ void blur_image_surface (cairo_surface_t *surface, int radius); void blur_impl_naive(uint32_t* src, uint32_t* dst, int width, int height, int src_stride, int dst_stride, int radius); void blur_impl_sse2(uint32_t* src, uint32_t* dst, int width, int height, float sigma); -void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height); +void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height); #endif diff --git a/blur_simd.c b/blur_simd.c index 27afb5f..b45ffdd 100644 --- a/blur_simd.c +++ b/blur_simd.c @@ -13,6 +13,7 @@ #define ALIGN16 __attribute__((aligned(16))) #define KERNEL_SIZE 7 +#define SIGMA_AV 2 #define HALF_KERNEL KERNEL_SIZE / 2 // number of xmm registers needed to store @@ -20,29 +21,31 @@ #define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { - // prepare kernel - float kernel[KERNEL_SIZE]; - float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; - - for (int i = 0; i < KERNEL_SIZE; i++) { - float x = HALF_KERNEL - i; - kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); - sum += kernel[i]; + // according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma: + // σ_av = sqrt((w*w-1)/12) + // for our 7x7 filter we have σ_av = 2.0. + // applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2] + // after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2 + // since it's a box blur filter, n >= 3 + // + // [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf + // [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics + + int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV)); + if (n < 3) n = 3; + + for (int i = 0; i < n; i++) + { + // horizontal pass includes image transposition: + // instead of writing pixel src[x] to dst[x], + // we write it to transposed location. + // (to be exact: dst[height * current_column + current_row]) + blur_impl_horizontal_pass_sse2(src, dst, width, height); + blur_impl_horizontal_pass_sse2(dst, src, height, width); } - - // normalize kernel - for (int i = 0; i < KERNEL_SIZE; i++) - kernel[i] /= sum; - - // horizontal pass includes image transposition: - // instead of writing pixel src[x] to dst[x], - // we write it to transposed location. - // (to be exact: dst[height * current_column + current_row]) - blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height); - blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width); } -void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) { +void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) { for (int row = 0; row < height; row++) { for (int column = 0; column < width; column++, src++) { __m128i rgbaIn[REGISTERS_CNT]; @@ -91,6 +94,7 @@ void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero), _mm_unpackhi_epi16(acc, zero)); + // multiplication is significantly faster than division acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc), _mm_set1_ps(1/((float)KERNEL_SIZE))));