|
|
@ -10,7 +10,6 @@ |
|
|
|
#include "blur.h" |
|
|
|
#include <math.h> |
|
|
|
#include <xmmintrin.h> |
|
|
|
#include <immintrin.h> |
|
|
|
|
|
|
|
#define ALIGN16 __attribute__((aligned(16))) |
|
|
|
#define KERNEL_SIZE 7 |
|
|
@ -20,12 +19,6 @@ |
|
|
|
// input pixels for given kernel size
|
|
|
|
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 |
|
|
|
|
|
|
|
// AVX intrinsics missing in GCC
|
|
|
|
#define _mm256_set_m128i(v0, v1) _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1) |
|
|
|
#define _mm256_setr_m128i(v0, v1) _mm256_set_m128i((v1), (v0)) |
|
|
|
#define _mm256_set_m128(v0, v1) _mm256_insertf128_ps(_mm256_castps128_ps256(v1), (v0), 1) |
|
|
|
#define _mm256_setr_m128(v0, v1) _mm256_set_m128((v1), (v0)) |
|
|
|
|
|
|
|
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
|
// prepare kernel
|
|
|
|
float kernel[KERNEL_SIZE]; |
|
|
@ -106,106 +99,3 @@ void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void blur_impl_avx(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
|
// prepare kernel
|
|
|
|
float kernel[KERNEL_SIZE]; |
|
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) { |
|
|
|
float x = HALF_KERNEL - i; |
|
|
|
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); |
|
|
|
sum += kernel[i]; |
|
|
|
} |
|
|
|
|
|
|
|
// normalize kernel
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) |
|
|
|
kernel[i] /= sum; |
|
|
|
|
|
|
|
// horizontal pass includes image transposition:
|
|
|
|
// instead of writing pixel src[x] to dst[x],
|
|
|
|
// we write it to transposed location.
|
|
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
|
|
blur_impl_horizontal_pass_avx(src, dst, kernel, width, height); |
|
|
|
blur_impl_horizontal_pass_avx(dst, src, kernel, height, width); |
|
|
|
} |
|
|
|
|
|
|
|
void blur_impl_horizontal_pass_avx(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) { |
|
|
|
__m256 kernels[HALF_KERNEL]; |
|
|
|
for (int i = 0, k = 0; i < HALF_KERNEL; i++, k += 2) |
|
|
|
kernels[i] = _mm256_setr_m128(_mm_set1_ps(kernel[k]), _mm_set1_ps(kernel[k+1])); |
|
|
|
|
|
|
|
for (int row = 0; row < height; row++) { |
|
|
|
for (int column = 0; column < width; column++, src++) { |
|
|
|
__m128i rgbaIn[REGISTERS_CNT]; |
|
|
|
|
|
|
|
// handle borders
|
|
|
|
int leftBorder = column < HALF_KERNEL; |
|
|
|
int rightBorder = column > width - HALF_KERNEL; |
|
|
|
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16; |
|
|
|
int i = 0; |
|
|
|
if (leftBorder) { |
|
|
|
// for kernel size 7x7 and column == 0, we have:
|
|
|
|
// x x x P0 P1 P2 P3
|
|
|
|
// first loop mirrors P{0..3} to fill x's,
|
|
|
|
// second one loads P{0..3}
|
|
|
|
for (; i < HALF_KERNEL - column; i++) |
|
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i)); |
|
|
|
for (; i < KERNEL_SIZE; i++) |
|
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i)); |
|
|
|
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) |
|
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); |
|
|
|
} else if (rightBorder) { |
|
|
|
for (; i < width - column; i++) |
|
|
|
_rgbaIn[i] = *(src + i); |
|
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++) |
|
|
|
_rgbaIn[i] = *(src - k); |
|
|
|
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) |
|
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); |
|
|
|
} else { |
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) |
|
|
|
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL)); |
|
|
|
} |
|
|
|
|
|
|
|
// unpack each pixel, convert to float,
|
|
|
|
// multiply by corresponding kernel value
|
|
|
|
// and add to accumulator
|
|
|
|
__m128i tmp; |
|
|
|
__m128i zero = _mm_setzero_si128(); |
|
|
|
__m128 rgba_ps_128; |
|
|
|
__m256 rgba_ps; |
|
|
|
__m256 acc = _mm256_setzero_ps(); |
|
|
|
int counter = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < 3; i++) |
|
|
|
{ |
|
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[i], zero); |
|
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero), |
|
|
|
_mm_unpackhi_epi16(tmp, zero))); |
|
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++])); |
|
|
|
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[i], zero); |
|
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero), |
|
|
|
_mm_unpackhi_epi16(tmp, zero))); |
|
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++])); |
|
|
|
} |
|
|
|
|
|
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[3], zero); |
|
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero), |
|
|
|
_mm_unpackhi_epi16(tmp, zero))); |
|
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter])); |
|
|
|
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[3], zero); |
|
|
|
rgba_ps_128 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); |
|
|
|
rgba_ps_128 = _mm_mul_ps(rgba_ps_128, _mm_set1_ps(kernel[KERNEL_SIZE-1])); |
|
|
|
rgba_ps_128 = _mm_add_ps(rgba_ps_128, _mm_add_ps(_mm256_extractf128_ps(acc, 0), |
|
|
|
_mm256_extractf128_ps(acc, 1))); |
|
|
|
|
|
|
|
__m128i rgbaOut = _mm_packs_epi32(_mm_cvtps_epi32(rgba_ps_128), zero); |
|
|
|
rgbaOut = _mm_packus_epi16(rgbaOut, zero); |
|
|
|
*(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|