Browse Source

Add AVX version.

It relies on some SSE2 instructions, so performance gain is not that
huge (about 1.4x).
I experimented with 256-bit loads, but they turned out to be slower (at
least on Sandy Bridge).
master
Sebastian Frysztak 8 years ago
parent
commit
f06dc6cbc4
  1. 1
      Makefile
  2. 8
      blur.h
  3. 109
      blur_simd.c

1
Makefile

@ -15,6 +15,7 @@ CFLAGS += -std=c99
CFLAGS += -pipe
CFLAGS += -Wall
CFLAGS += -mssse3
CFLAGS += -mavx
CFLAGS += -O2
CPPFLAGS += -D_GNU_SOURCE
CPPFLAGS += -DXKBCOMPOSE=$(shell if test -e /usr/include/xkbcommon/xkbcommon-compose.h ; then echo 1 ; else echo 0 ; fi )

8
blur.h

@ -6,8 +6,14 @@
void blur_image_surface (cairo_surface_t *surface, int radius);
void blur_impl_naive(uint32_t* src, uint32_t* dst, int width, int height, int src_stride, int dst_stride, int radius);
void blur_impl_sse2(uint32_t* src, uint32_t* dst, int width, int height, float sigma);
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height);
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height)
__attribute__ ((__target__ ("no-avx")));
void blur_impl_avx(uint32_t* src, uint32_t* dst, int width, int height, float sigma);
void blur_impl_horizontal_pass_avx(uint32_t *src, uint32_t *dst, float *kernel, int width, int height);
void blur_impl_ssse3(uint32_t* src, uint32_t* dst, int width, int height, float sigma);
void blur_impl_horizontal_pass_ssse3(uint32_t *src, uint32_t *dst, int16_t *kernel, int width, int height);

109
blur_simd.c

@ -11,6 +11,7 @@
#include <math.h>
#include <xmmintrin.h>
#include <tmmintrin.h>
#include <immintrin.h>
#define ALIGN16 __attribute__((aligned(16)))
#define KERNEL_SIZE 15
@ -25,6 +26,12 @@
// used in SSSE3 implementation.
#define SCALE_FACTOR 14
// AVX intrinsics missing in GCC
#define _mm256_set_m128i(v0, v1) _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1)
#define _mm256_setr_m128i(v0, v1) _mm256_set_m128i((v1), (v0))
#define _mm256_set_m128(v0, v1) _mm256_insertf128_ps(_mm256_castps128_ps256(v1), (v0), 1)
#define _mm256_setr_m128(v0, v1) _mm256_set_m128((v1), (v0))
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
// prepare kernel
float kernel[KERNEL_SIZE];
@ -124,6 +131,108 @@ void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel,
}
}
void blur_impl_avx(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
// prepare kernel
float kernel[KERNEL_SIZE];
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0;
for (int i = 0; i < KERNEL_SIZE; i++) {
float x = HALF_KERNEL - i;
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma));
sum += kernel[i];
}
// normalize kernel
for (int i = 0; i < KERNEL_SIZE; i++)
kernel[i] /= sum;
// horizontal pass includes image transposition:
// instead of writing pixel src[x] to dst[x],
// we write it to transposed location.
// (to be exact: dst[height * current_column + current_row])
blur_impl_horizontal_pass_avx(src, dst, kernel, width, height);
blur_impl_horizontal_pass_avx(dst, src, kernel, height, width);
}
void blur_impl_horizontal_pass_avx(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) {
__m256 kernels[HALF_KERNEL];
for (int i = 0, k = 0; i < HALF_KERNEL; i++, k += 2)
kernels[i] = _mm256_setr_m128(_mm_set1_ps(kernel[k]), _mm_set1_ps(kernel[k+1]));
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++, src++) {
__m128i rgbaIn[REGISTERS_CNT];
// handle borders
int leftBorder = column < HALF_KERNEL;
int rightBorder = column > width - HALF_KERNEL;
if (leftBorder || rightBorder) {
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16;
int i = 0;
if (leftBorder) {
// for kernel size 7x7 and column == 0, we have:
// x x x P0 P1 P2 P3
// first loop mirrors P{0..3} to fill x's,
// second one loads P{0..3}
for (; i < HALF_KERNEL - column; i++)
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
for (; i < KERNEL_SIZE; i++)
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
} else {
for (; i < width - column; i++)
_rgbaIn[i] = *(src + i);
for (int k = 0; i < KERNEL_SIZE; i++, k++)
_rgbaIn[i] = *(src - k);
}
for (int k = 0; k < REGISTERS_CNT; k++)
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
} else {
for (int k = 0; k < REGISTERS_CNT; k++)
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
}
// unpack each pixel, convert to float,
// multiply by corresponding kernel value
// and add to accumulator
__m128i tmp;
__m128i zero = _mm_setzero_si128();
__m128 rgba_ps_128;
__m256 rgba_ps;
__m256 acc = _mm256_setzero_ps();
int counter = 0;
for (int i = 0; i < 3; i++)
{
tmp = _mm_unpacklo_epi8(rgbaIn[i], zero);
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
_mm_unpackhi_epi16(tmp, zero)));
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++]));
tmp = _mm_unpackhi_epi8(rgbaIn[i], zero);
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
_mm_unpackhi_epi16(tmp, zero)));
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++]));
}
tmp = _mm_unpacklo_epi8(rgbaIn[3], zero);
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
_mm_unpackhi_epi16(tmp, zero)));
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter]));
tmp = _mm_unpackhi_epi8(rgbaIn[3], zero);
rgba_ps_128 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
rgba_ps_128 = _mm_mul_ps(rgba_ps_128, _mm_set1_ps(kernel[KERNEL_SIZE-1]));
rgba_ps_128 = _mm_add_ps(rgba_ps_128, _mm_add_ps(_mm256_extractf128_ps(acc, 0),
_mm256_extractf128_ps(acc, 1)));
__m128i rgbaOut = _mm_packs_epi32(_mm_cvtps_epi32(rgba_ps_128), zero);
rgbaOut = _mm_packus_epi16(rgbaOut, zero);
*(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut);
}
}
}
void blur_impl_ssse3(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
// prepare kernel
float kernelf[KERNEL_SIZE];

Loading…
Cancel
Save