|
|
@ -8,76 +8,261 @@ |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "blur.h" |
|
|
|
#include <math.h> |
|
|
|
#include <xmmintrin.h> |
|
|
|
#include <tmmintrin.h> |
|
|
|
|
|
|
|
#include <stdio.h> |
|
|
|
|
|
|
|
// number of xmm registers needed to store input pixels for given kernel size
|
|
|
|
#define ALIGN16 __attribute__((aligned(16))) |
|
|
|
#define KERNEL_SIZE 15 |
|
|
|
#define HALF_KERNEL KERNEL_SIZE / 2 |
|
|
|
|
|
|
|
// number of xmm registers needed to store
|
|
|
|
// input pixels for given kernel size
|
|
|
|
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 |
|
|
|
|
|
|
|
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) { |
|
|
|
printf("height %d by width %d\n", height, width); |
|
|
|
// scaling factor for kernel coefficients.
|
|
|
|
// higher values cause desaturation.
|
|
|
|
// used in SSSE3 implementation.
|
|
|
|
#define SCALE_FACTOR 7 |
|
|
|
|
|
|
|
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
|
// prepare kernel
|
|
|
|
float kernel[KERNEL_SIZE]; |
|
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) { |
|
|
|
float x = HALF_KERNEL - i; |
|
|
|
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); |
|
|
|
sum += kernel[i]; |
|
|
|
} |
|
|
|
|
|
|
|
// normalize kernel
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) |
|
|
|
kernel[i] /= sum; |
|
|
|
|
|
|
|
// horizontal pass includes image transposition:
|
|
|
|
// instead of writing pixel src[x] to dst[x],
|
|
|
|
// we write it to transposed location.
|
|
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
|
|
blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height); |
|
|
|
blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width); |
|
|
|
} |
|
|
|
|
|
|
|
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) { |
|
|
|
for (int row = 0; row < height; row++) { |
|
|
|
printf("row %d\n", row); |
|
|
|
for (int column = 0; column < width; column++, src++) { |
|
|
|
printf("\tcol %d\n", column); |
|
|
|
__m128i rgbaIn[REGISTERS_CNT]; |
|
|
|
|
|
|
|
// handle borders
|
|
|
|
int leftBorder = column < HALF_KERNEL; |
|
|
|
int rightBorder = column > (width - HALF_KERNEL); |
|
|
|
// +1 to make memory checkers not complain
|
|
|
|
uint32_t _rgbaIn[KERNEL_SIZE + 1] __attribute__((aligned(16))); |
|
|
|
int i = 0; |
|
|
|
if (leftBorder) { |
|
|
|
// for kernel size 8x8 and column == 0, we have:
|
|
|
|
// x x x x P0 P1 P2 P3
|
|
|
|
// first loop mirrors P{0..4} to fill x's,
|
|
|
|
// second one loads P{0..4}
|
|
|
|
for (; i < HALF_KERNEL - column; i++) |
|
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i)); |
|
|
|
for (; i < KERNEL_SIZE; i++) |
|
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i)); |
|
|
|
int rightBorder = column > width - HALF_KERNEL; |
|
|
|
if (leftBorder || rightBorder) { |
|
|
|
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16; |
|
|
|
int i = 0; |
|
|
|
if (leftBorder) { |
|
|
|
// for kernel size 7x7 and column == 0, we have:
|
|
|
|
// x x x P0 P1 P2 P3
|
|
|
|
// first loop mirrors P{0..3} to fill x's,
|
|
|
|
// second one loads P{0..3}
|
|
|
|
for (; i < HALF_KERNEL - column; i++) |
|
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i)); |
|
|
|
for (; i < KERNEL_SIZE; i++) |
|
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i)); |
|
|
|
} else { |
|
|
|
for (; i < width - column; i++) |
|
|
|
_rgbaIn[i] = *(src + i); |
|
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++) |
|
|
|
_rgbaIn[i] = *(src - k); |
|
|
|
} |
|
|
|
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) |
|
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); |
|
|
|
} else if (rightBorder) { |
|
|
|
for (; i < width - column; i++) |
|
|
|
_rgbaIn[i] = *(src + i); |
|
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++) |
|
|
|
_rgbaIn[i] = *(src - k); |
|
|
|
|
|
|
|
} else { |
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) |
|
|
|
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL)); |
|
|
|
} |
|
|
|
|
|
|
|
// unpack each pixel, convert to float,
|
|
|
|
// multiply by corresponding kernel value
|
|
|
|
// and add to accumulator
|
|
|
|
__m128i tmp; |
|
|
|
__m128i zero = _mm_setzero_si128(); |
|
|
|
__m128 rgba_ps; |
|
|
|
__m128 acc = _mm_setzero_ps(); |
|
|
|
int counter = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < 3; i++) |
|
|
|
{ |
|
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[i], zero); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[i], zero); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
} |
|
|
|
|
|
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[3], zero); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[3], zero); |
|
|
|
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); |
|
|
|
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); |
|
|
|
|
|
|
|
__m128i rgbaOut = _mm_cvtps_epi32(acc); |
|
|
|
rgbaOut = _mm_packs_epi32(rgbaOut, zero); |
|
|
|
rgbaOut = _mm_packus_epi16(rgbaOut, zero); |
|
|
|
*(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void blur_impl_ssse3(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { |
|
|
|
// prepare kernel
|
|
|
|
float kernelf[KERNEL_SIZE]; |
|
|
|
int8_t kernel[KERNEL_SIZE + 1]; |
|
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) { |
|
|
|
float x = HALF_KERNEL - i; |
|
|
|
kernelf[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); |
|
|
|
sum += kernelf[i]; |
|
|
|
} |
|
|
|
|
|
|
|
// normalize kernel
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) |
|
|
|
kernelf[i] /= sum; |
|
|
|
|
|
|
|
// round to nearest integer and convert to int
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) |
|
|
|
kernel[i] = (int8_t)rintf(kernelf[i] * (1 << SCALE_FACTOR)); |
|
|
|
kernel[KERNEL_SIZE] = 0; |
|
|
|
|
|
|
|
// horizontal pass includes image transposition:
|
|
|
|
// instead of writing pixel src[x] to dst[x],
|
|
|
|
// we write it to transposed location.
|
|
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
|
|
blur_impl_horizontal_pass_ssse3(src, dst, kernel, width, height); |
|
|
|
blur_impl_horizontal_pass_ssse3(dst, src, kernel, height, width); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void blur_impl_horizontal_pass_ssse3(uint32_t *src, uint32_t *dst, int8_t *kernel, int width, int height) { |
|
|
|
uint32_t* o_src = src; |
|
|
|
__m128i _kern = _mm_loadu_si128((__m128i*)kernel); |
|
|
|
__m128i rgbaIn[REGISTERS_CNT]; |
|
|
|
|
|
|
|
for (int row = 0; row < height; row++) { |
|
|
|
for (int column = 0; column < width; column++, src++) { |
|
|
|
uint32_t _rgbaIn[KERNEL_SIZE + 1] ALIGN16; |
|
|
|
#if 0 |
|
|
|
for (int j = 0; j < KERNEL_SIZE; ++j) { |
|
|
|
printf("_rgbaIn[%d]: %p->%p\n", j, &_rgbaIn[j], &_rgbaIn[j] + 1); |
|
|
|
} |
|
|
|
#endif |
|
|
|
// handle borders
|
|
|
|
int leftBorder = column < HALF_KERNEL; |
|
|
|
int rightBorder = column > width - HALF_KERNEL; |
|
|
|
if (leftBorder || rightBorder) { |
|
|
|
int i = 0; |
|
|
|
if (leftBorder) { |
|
|
|
// for kernel size 7x7 and column == 0, we have:
|
|
|
|
// x x x P0 P1 P2 P3
|
|
|
|
// first loop mirrors P{0..3} to fill x's,
|
|
|
|
// second one loads P{0..3}
|
|
|
|
for (; i < HALF_KERNEL - column; i++) |
|
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i)); |
|
|
|
for (; i < KERNEL_SIZE; i++) |
|
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i)); |
|
|
|
} else { |
|
|
|
for (; i < width - column; i++) |
|
|
|
_rgbaIn[i] = *(src + i); |
|
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++) |
|
|
|
_rgbaIn[i] = *(src - k); |
|
|
|
} |
|
|
|
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) { |
|
|
|
#if 0 |
|
|
|
printf("K: %d; p: %p, p+4*k: %p, end of p: %p\n", k, _rgbaIn, _rgbaIn+4*k, ((__m128i*) (_rgbaIn +4*k)) + 1); |
|
|
|
#endif |
|
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++) { |
|
|
|
printf("\t\tk: %d %p\n", k, src); |
|
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(src + 4*k - HALF_KERNEL)); |
|
|
|
if ((long long)(((__m128i*) src + 4*k - HALF_KERNEL) + 1) > (long long)((o_src + (width * height)))) break; |
|
|
|
#if 0 |
|
|
|
printf("K: %d; p: %p -> %p\n", k, src+4*k - HALF_KERNEL, ((__m128i*) (src +4*k - HALF_KERNEL)) + 1); |
|
|
|
printf("%p->%p, %p->%p (%ld)\n", (__m128i*) src + 4*k - HALF_KERNEL, ((__m128i*) src + 4*k - HALF_KERNEL) + 1, o_src, o_src + (width * height), o_src + (width * height) - src); |
|
|
|
#endif |
|
|
|
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// basis of this implementation is _mm_maddubs_epi16 (aka pmaddubsw).
|
|
|
|
// 'rgba' holds 16 unsigned bytes, so 4 pixels.
|
|
|
|
// 'kern' holds 16 signed bytes kernel values multiplied by (1 << SCALE_FACTOR).
|
|
|
|
// before multiplication takes place, vectors need to be prepared:
|
|
|
|
// 'rgba' is shuffled from R1B1G1A1...R4B4G4A4 to R1R2R3R4...A1A2A3A4
|
|
|
|
// 'kern' is shuffled from w1w2w3w4...w13w14w15w16 to w1w2w3w4 repeated 4 times
|
|
|
|
// then we call _mm_maddubs_epi16 and we get:
|
|
|
|
// --------------------------------------------------------------------------------------
|
|
|
|
// | R1*w1 + R2*w2 | R3*w3 + R4*w4 | G1*w1 + G2*w2 | G3*w3 + G4*w4 | repeat for B and A |
|
|
|
|
// --------------------------------------------------------------------------------------
|
|
|
|
// each 'rectangle' is a 16-byte signed int.
|
|
|
|
// then we repeat the process for the rest of input pixels,
|
|
|
|
// call _mm_hadds_epi16 to add adjacent ints and shift right to scale by SCALE_FACTOR.
|
|
|
|
|
|
|
|
__m128i rgba, kern; |
|
|
|
__m128i zero = _mm_setzero_si128(); |
|
|
|
__m128i acc = _mm_setzero_si128(); |
|
|
|
|
|
|
|
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[0], zero)); |
|
|
|
acc = _mm_add_epi16(acc, _mm_unpackhi_epi8(rgbaIn[0], zero)); |
|
|
|
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[1], zero)); |
|
|
|
const __m128i rgba_shuf_mask = _mm_setr_epi8(0, 4, 8, 12, |
|
|
|
1, 5, 9, 13, |
|
|
|
2, 6, 10, 14, |
|
|
|
3, 7, 11, 15); |
|
|
|
|
|
|
|
// kernel size equals to 7, but we can only load multiples of 4 pixels
|
|
|
|
// we have to set 8th pixel to zero
|
|
|
|
/*
|
|
|
|
acc = _mm_add_epi16(acc, _mm_andnot_si128(_mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0, 0), |
|
|
|
_mm_unpackhi_epi8(rgbaIn[1], zero))); |
|
|
|
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero), |
|
|
|
_mm_unpackhi_epi16(acc, zero)); |
|
|
|
*/ |
|
|
|
|
|
|
|
// multiplication is significantly faster than division
|
|
|
|
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc), |
|
|
|
_mm_set1_ps(1.0/KERNEL_SIZE))); |
|
|
|
|
|
|
|
*(dst + height * column + row) = |
|
|
|
_mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(acc, zero), zero)); |
|
|
|
const __m128i kern_shuf_mask = _mm_setr_epi8(0, 1, 2, 3, |
|
|
|
0, 1, 2, 3, |
|
|
|
0, 1, 2, 3, |
|
|
|
0, 1, 2, 3); |
|
|
|
|
|
|
|
rgba = _mm_shuffle_epi8(rgbaIn[0], rgba_shuf_mask); |
|
|
|
kern = _mm_shuffle_epi8(_kern, kern_shuf_mask); |
|
|
|
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern)); |
|
|
|
|
|
|
|
rgba = _mm_shuffle_epi8(rgbaIn[1], rgba_shuf_mask); |
|
|
|
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 4), kern_shuf_mask); |
|
|
|
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern)); |
|
|
|
|
|
|
|
rgba = _mm_shuffle_epi8(rgbaIn[2], rgba_shuf_mask); |
|
|
|
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 8), kern_shuf_mask); |
|
|
|
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern)); |
|
|
|
|
|
|
|
rgba = _mm_shuffle_epi8(rgbaIn[3], rgba_shuf_mask); |
|
|
|
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 12), kern_shuf_mask); |
|
|
|
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern)); |
|
|
|
|
|
|
|
acc = _mm_hadds_epi16(acc, zero); |
|
|
|
acc = _mm_srai_epi16(acc, SCALE_FACTOR); |
|
|
|
|
|
|
|
// Cairo sets alpha channel to 255
|
|
|
|
// (or -1, depending how you look at it)
|
|
|
|
// this quickly overflows accumulator,
|
|
|
|
// and alpha is calculated completely wrong.
|
|
|
|
// I assume most people don't use semi-transparent
|
|
|
|
// lock screen images, so no one will mind if we
|
|
|
|
// 'correct it' by setting alpha to 255.
|
|
|
|
*(dst + height * column + row) = |
|
|
|
_mm_cvtsi128_si32(_mm_packus_epi16(acc, zero)) | 0xFF000000; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|