/* * vim:ts=4:sw=4:expandtab * * © 2016 Sebastian Frysztak * * See LICENSE for licensing information * */ #include "blur.h" #include #include #define ALIGN16 __attribute__((aligned(16))) #define KERNEL_SIZE 15 #define HALF_KERNEL KERNEL_SIZE / 2 // number of xmm registers needed to store // input pixels for given kernel size #define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { // prepare kernel float kernel[KERNEL_SIZE]; float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0; for (int i = 0; i < KERNEL_SIZE; i++) { float x = HALF_KERNEL - i; kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma)); sum += kernel[i]; } // normalize kernel for (int i = 0; i < KERNEL_SIZE; i++) kernel[i] /= sum; // horizontal pass includes image transposition: // instead of writing pixel src[x] to dst[x], // we write it to transposed location. // (to be exact: dst[height * current_column + current_row]) blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height); blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width); } void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) { for (int row = 0; row < height; row++) { // remember first and last pixel in a row // (used to handle borders) uint32_t firstPixel = *src; uint32_t lastPixel = *(src + width - 1); for (int column = 0; column < width; column++, src++) { __m128i rgbaIn[REGISTERS_CNT]; // handle borders int leftBorder = column < HALF_KERNEL; int rightBorder = column + HALF_KERNEL >= width; if (leftBorder || rightBorder) { uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16; int i = 0; if (leftBorder) { // for kernel size 7x7 and column == 0, we have: // x x x P0 P1 P2 P3 // first loop fills x's with P0, second one loads P{0..3} for (; i < HALF_KERNEL - column; i++) _rgbaIn[i] = firstPixel; for (; i < KERNEL_SIZE; i++) _rgbaIn[i] = *(src + i - HALF_KERNEL); } else { for (; width < column; i++) _rgbaIn[i] = *(src - i - HALF_KERNEL); for (; i < KERNEL_SIZE; i++) _rgbaIn[i] = lastPixel; } for (int k = 0; k < REGISTERS_CNT; k++) rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); } else { for (int k = 0; k < REGISTERS_CNT; k++) rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL)); } // unpack each pixel, convert to float, // multiply by corresponding kernel value // and add to accumulator __m128i tmp; __m128i zero = _mm_setzero_si128(); __m128 rgba_ps; __m128 acc = _mm_setzero_ps(); int counter = 0; for (int i = 0; i < 3; i++) { tmp = _mm_unpacklo_epi8(rgbaIn[i], zero); rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); tmp = _mm_unpackhi_epi8(rgbaIn[i], zero); rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); } tmp = _mm_unpacklo_epi8(rgbaIn[3], zero); rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); tmp = _mm_unpackhi_epi8(rgbaIn[3], zero); rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero)); acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++]))); __m128i rgbaOut = _mm_cvtps_epi32(acc); rgbaOut = _mm_packs_epi32(rgbaOut, zero); rgbaOut = _mm_packus_epi16(rgbaOut, zero); *(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut); } } }