/* * vim:ts=4:sw=4:expandtab * * © 2016 Sebastian Frysztak * * See LICENSE for licensing information * */ #include "blur.h" #include #include #define ALIGN16 __attribute__((aligned(16))) #define KERNEL_SIZE 7 #define SIGMA_AV 2 #define HALF_KERNEL KERNEL_SIZE / 2 // number of xmm registers needed to store // input pixels for given kernel size #define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { // according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma: // σ_av = sqrt((w*w-1)/12) // for our 7x7 filter we have σ_av = 2.0. // applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2] // after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2 // since it's a box blur filter, n >= 3 // // [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf // [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV)); if (n < 3) n = 3; for (int i = 0; i < n; i++) { // horizontal pass includes image transposition: // instead of writing pixel src[x] to dst[x], // we write it to transposed location. // (to be exact: dst[height * current_column + current_row]) blur_impl_horizontal_pass_sse2(src, dst, width, height); blur_impl_horizontal_pass_sse2(dst, src, height, width); } } void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) { for (int row = 0; row < height; row++) { for (int column = 0; column < width; column++, src++) { __m128i rgbaIn[REGISTERS_CNT]; // handle borders int leftBorder = column < HALF_KERNEL; int rightBorder = column > width - HALF_KERNEL; uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16; int i = 0; if (leftBorder) { // for kernel size 7x7 and column == 0, we have: // x x x P0 P1 P2 P3 // first loop mirrors P{0..3} to fill x's, // second one loads P{0..3} for (; i < HALF_KERNEL - column; i++) _rgbaIn[i] = *(src + (HALF_KERNEL - i)); for (; i < KERNEL_SIZE; i++) _rgbaIn[i] = *(src - (HALF_KERNEL - i)); for (int k = 0; k < REGISTERS_CNT; k++) rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); } else if (rightBorder) { for (; i < width - column; i++) _rgbaIn[i] = *(src + i); for (int k = 0; i < KERNEL_SIZE; i++, k++) _rgbaIn[i] = *(src - k); for (int k = 0; k < REGISTERS_CNT; k++) rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k)); } else { for (int k = 0; k < REGISTERS_CNT; k++) rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL)); } __m128i zero = _mm_setzero_si128(); __m128i acc = _mm_setzero_si128(); acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[0], zero)); acc = _mm_add_epi16(acc, _mm_unpackhi_epi8(rgbaIn[0], zero)); acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[1], zero)); // kernel size equals to 7, but we can only load multiples of 4 pixels // we have to set 8th pixel to zero acc = _mm_add_epi16(acc, _mm_andnot_si128(_mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0, 0), _mm_unpackhi_epi8(rgbaIn[1], zero))); acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero), _mm_unpackhi_epi16(acc, zero)); // multiplication is significantly faster than division acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc), _mm_set1_ps(1/((float)KERNEL_SIZE)))); *(dst + height * column + row) = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(acc, zero), zero)); } } }