diff --git a/blur.c b/blur.c index a5b0bd3..070e5f2 100644 --- a/blur.c +++ b/blur.c @@ -24,15 +24,12 @@ #include #include "blur.h" -#define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0]) - /* Performs a simple 2D Gaussian blur of radius @radius on surface @surface. */ void blur_image_surface (cairo_surface_t *surface, int radius) { cairo_surface_t *tmp; int width, height; - int src_stride, dst_stride; uint32_t *src, *dst; if (cairo_surface_status (surface)) @@ -64,89 +61,87 @@ blur_image_surface (cairo_surface_t *surface, int radius) return; src = (uint32_t*)cairo_image_surface_get_data (surface); - src_stride = cairo_image_surface_get_stride (surface); - dst = (uint32_t*)cairo_image_surface_get_data (tmp); - dst_stride = cairo_image_surface_get_stride (tmp); - - //blur_impl_naive(src, dst, width, height, src_stride, dst_stride, 10000); - //blur_impl_sse2(src, dst, width, height, 4.5); - blur_impl_ssse3(src, dst, width, height, 4.5); + // according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma: + // σ_av = sqrt((w*w-1)/12) + // for our 7x7 filter we have σ_av = 2.0. + // applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2] + // after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2 + // since it's a box blur filter, n >= 3 + // + // [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf + // [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics + + float sigma = 5; + + int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV)); + if (n < 3) n = 3; + + for (int i = 0; i < n; i++) + { + // horizontal pass includes image transposition: + // instead of writing pixel src[x] to dst[x], + // we write it to transposed location. + // (to be exact: dst[height * current_column + current_row]) +#ifdef __x86_64__ + blur_impl_horizontal_pass_sse2(src, dst, width, height); + blur_impl_horizontal_pass_sse2(dst, src, height, width); +#else + blur_impl_horizontal_pass_generic(src, dst, width, height); + blur_impl_horizontal_pass_generic(dst, src, height, width); +#endif + } + cairo_surface_destroy (tmp); cairo_surface_flush (surface); cairo_surface_mark_dirty (surface); } -void blur_impl_naive(uint32_t* _src, uint32_t* _dst, int width, int height, int src_stride, int dst_stride, int radius) -{ - int x, y, z, w; - uint32_t *s, *d, a, p; - int i, j, k; - uint8_t kernel[17]; - const int size = ARRAY_LENGTH (kernel); - const int half = size / 2; - - uint8_t *src = (uint8_t*)_src; - uint8_t *dst = (uint8_t*)_dst; - - a = 0; - for (i = 0; i < size; i++) { - double f = i - half; - a += kernel[i] = exp (- f * f / 30.0) * 80; - } - - /* Horizontally blur from surface -> tmp */ - for (i = 0; i < height; i++) { - s = (uint32_t *) (src + i * src_stride); - d = (uint32_t *) (dst + i * dst_stride); - for (j = 0; j < width; j++) { - if (radius < j && j < width - radius) { - d[j] = s[j]; - continue; - } - - x = y = z = w = 0; - for (k = 0; k < size; k++) { - if (j - half + k < 0 || j - half + k >= width) - continue; - - p = s[j - half + k]; - - x += ((p >> 24) & 0xff) * kernel[k]; - y += ((p >> 16) & 0xff) * kernel[k]; - z += ((p >> 8) & 0xff) * kernel[k]; - w += ((p >> 0) & 0xff) * kernel[k]; +void blur_impl_horizontal_pass_generic(uint32_t *src, uint32_t *dst, int width, int height) { + for (int row = 0; row < height; row++) { + for (int column = 0; column < width; column++, src++) { + uint32_t rgbaIn[KERNEL_SIZE]; + + // handle borders + int leftBorder = column < HALF_KERNEL; + int rightBorder = column > width - HALF_KERNEL; + int i = 0; + if (leftBorder) { + // for kernel size 7x7 and column == 0, we have: + // x x x P0 P1 P2 P3 + // first loop mirrors P{0..3} to fill x's, + // second one loads P{0..3} + for (; i < HALF_KERNEL - column; i++) + rgbaIn[i] = *(src + (HALF_KERNEL - i)); + for (; i < KERNEL_SIZE; i++) + rgbaIn[i] = *(src - (HALF_KERNEL - i)); + } else if (rightBorder) { + for (; i < width - column; i++) + rgbaIn[i] = *(src + i); + for (int k = 0; i < KERNEL_SIZE; i++, k++) + rgbaIn[i] = *(src - k); + } else { + for (; i < KERNEL_SIZE; i++) + rgbaIn[i] = *(src + i - HALF_KERNEL); + } + + uint32_t acc[4] = {0}; + + for (i = 0; i < KERNEL_SIZE; i++) { + acc[0] += (rgbaIn[i] & 0xFF000000) >> 24; + acc[1] += (rgbaIn[i] & 0x00FF0000) >> 16; + acc[2] += (rgbaIn[i] & 0x0000FF00) >> 8; + acc[3] += (rgbaIn[i] & 0x000000FF) >> 0; + } + + for(i = 0; i < 4; i++) + acc[i] *= 1.0/KERNEL_SIZE; + + *(dst + height * column + row) = (acc[0] << 24) | + (acc[1] << 16) | + (acc[2] << 8 ) | + (acc[3] << 0); } - d[j] = (x / a << 24) | (y / a << 16) | (z / a << 8) | w / a; - } - } - - /* Then vertically blur from tmp -> surface */ - for (i = 0; i < height; i++) { - s = (uint32_t *) (dst + i * dst_stride); - d = (uint32_t *) (src + i * src_stride); - for (j = 0; j < width; j++) { - if (radius <= i && i < height - radius) { - d[j] = s[j]; - continue; - } - - x = y = z = w = 0; - for (k = 0; k < size; k++) { - if (i - half + k < 0 || i - half + k >= height) - continue; - - s = (uint32_t *) (dst + (i - half + k) * dst_stride); - p = s[j]; - - x += ((p >> 24) & 0xff) * kernel[k]; - y += ((p >> 16) & 0xff) * kernel[k]; - z += ((p >> 8) & 0xff) * kernel[k]; - w += ((p >> 0) & 0xff) * kernel[k]; - } - d[j] = (x / a << 24) | (y / a << 16) | (z / a << 8) | w / a; - } } } - diff --git a/blur.h b/blur.h index 5e959a9..c1fabc0 100644 --- a/blur.h +++ b/blur.h @@ -4,11 +4,14 @@ #include #include +#define KERNEL_SIZE 7 +#define SIGMA_AV 2 +#define HALF_KERNEL KERNEL_SIZE / 2 + void blur_image_surface (cairo_surface_t *surface, int radius); -void blur_impl_naive(uint32_t* src, uint32_t* dst, int width, int height, int src_stride, int dst_stride, int radius); -void blur_impl_sse2(uint32_t* src, uint32_t* dst, int width, int height, float sigma); void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height); +void blur_impl_horizontal_pass_generic(uint32_t *src, uint32_t *dst, int width, int height); #endif diff --git a/blur_simd.c b/blur_simd.c index b45ffdd..6861ce8 100644 --- a/blur_simd.c +++ b/blur_simd.c @@ -8,43 +8,12 @@ */ #include "blur.h" -#include #include #define ALIGN16 __attribute__((aligned(16))) -#define KERNEL_SIZE 7 -#define SIGMA_AV 2 -#define HALF_KERNEL KERNEL_SIZE / 2 - -// number of xmm registers needed to store -// input pixels for given kernel size +// number of xmm registers needed to store input pixels for given kernel size #define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4 -void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) { - // according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma: - // σ_av = sqrt((w*w-1)/12) - // for our 7x7 filter we have σ_av = 2.0. - // applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2] - // after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2 - // since it's a box blur filter, n >= 3 - // - // [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf - // [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics - - int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV)); - if (n < 3) n = 3; - - for (int i = 0; i < n; i++) - { - // horizontal pass includes image transposition: - // instead of writing pixel src[x] to dst[x], - // we write it to transposed location. - // (to be exact: dst[height * current_column + current_row]) - blur_impl_horizontal_pass_sse2(src, dst, width, height); - blur_impl_horizontal_pass_sse2(dst, src, height, width); - } -} - void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) { for (int row = 0; row < height; row++) { for (int column = 0; column < width; column++, src++) {